American option pricing under stochastic volatility: an empirical evaluation
نویسندگان
چکیده
Over the past few years, model complexity in quantitative finance has increased substantially in response to earlier approaches that did not capture critical features for risk management. However, given the preponderance of the classical Black–Scholes model, it is still not clear that this increased complexity is matched by additional accuracy in the ultimate result. In particular, the last decade has witnessed a flurry of activity in modeling asset volatility, and studies evaluating different alternatives for option pricing have focused on European-style exercise. In this paper, we extend these empirical evaluations toAmerican options, as their additional opportunity for early exercise may incorporate stochastic volatility in the pricing differently. Specifically, the present work compares the empirical pricing and hedging performance of the commonly adopted stochastic volatility model of Heston (Rev Financial Stud 6:327–343, 1993) against the traditional constant volatility benchmark of Black and Scholes (J Polit Econ 81:637–659, 1973). Using S&P 100 index options data, our study indicates that this particular stochastic volatility model offers enhancements in line with their European-style counterparts for in-the-money options. However, the most striking improvements are for out-of-the-money options, which because of early exercise are more valuable than their European-style counterparts, especially when volatility is stochastic.
منابع مشابه
Option pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملNumerical Solution of Pricing of European Put Option with Stochastic Volatility
In this paper, European option pricing with stochastic volatility forecasted by well known GARCH model is discussed in context of Indian financial market. The data of Reliance Ltd. stockprice from 3/01/2000 to 30/03/2009 is used and resulting partial differential equation is solved byCrank-Nicolson finite difference method for various interest rates and maturity in time. Thesensitivity measures...
متن کاملEstimation and Pricing under Long-Memory Stochastic Volatility
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein-Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous ...
متن کاملAsset pricing under information with stochastic volatility
Based on a general specification of the asset specific pricing kernel, we develop a pricing model using an information process with stochastic volatility. We derive analytical asset and option pricing formulas. The asset prices in this rational expectations model exhibit crash-like, strong downward movements. The resulting option pricing formula is consistent with the strong negative skewness a...
متن کاملA Finite-element Approach for Pricing Swing Options under Stochastic Volatility
Option pricing plays an important role in financial,energy, and commodity markets. The Black-Scholes model is an indispensable framework for the option pricing. This thesis studies the pricing of a swing option under stochastic volatility. A swing option is an American-style contract with multiple exercise rights. As such, it is an optimal multiplestopping time problem. In this dissertation, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Manag. Science
دوره 7 شماره
صفحات -
تاریخ انتشار 2010